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ABSTRACT

Circadian rhythm refers to the daily physiologically fluctuating patterns of systemic process-

es that occur within a circa 24-hour timeframe, independently of external factors. There is 

evidence that in time, external and internal cycle misalignment leads to severe health con-

sequences, resulting in the development of cardiometabolic disturbances. Desynchronized 

hormonal fluctuations along with daily specific macronutrient utilization patterns are also dis-

cussed, which by consequence, are all predictors of metabolic syndrome. The aim of this 

paper is to provide insight on the circadian clock’s organization throughout the human body 

and to explain the underlying genetic background. By understanding these well-established 

molecular mechanisms and processes, we believe this paper will provide accuracy regarding 

the importance of the circadian clock’s integrity and will highlight its role in the etiopathology 

of cardiometabolic syndrome.
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The circadian axis

Central clock: nucleus suprachiasmaticus

The circadian rhythm is regulated mainly by the nucleus suprachiasmaticus 
(NSC) of the hypothalamus, called the ‘master’ clock, but clock genes have also 
been identified in the arcuate (AN) and paraventricular (PVN) hypothalamic 
nuclei.1–3 These structures form an essential neuronal network and maintain 
metabolic health on a whole-body level.4 The NSC integrates rhythmic oscilla-
tions of clock gene expression only if intracellular calcium and cyclic adenosine 
monophosphate (cAMP) levels are sufficient for membrane depolarization.4

By its pacemaker function, the NSC allows these cellular oscillations to be 
‘entrained’, by which a consistent and distinctly timed output is provided to pe-
ripheral tissues, even in constant darkness.4,5
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It has long been proven in animal models that the abol-
ishment of circadian rhythmicity causes the significant al-
teration of several behavioral and endocrine functions.6,7 
For instance, the transplantation of fetal hamster NSC tis-
sue to replace previously damaged components was found 
to restore the daily rhythmicity of locomotor activity.8 This 
was also observed in Circadian locomotor output  cycles 
kaput (CLOCK) mutant or mCry1/mCry2 double knock-
out mice, where by grafting, daily behavioral rhythm was 
reestablished.9 In all of the cases, circadian behavior and 
cycle period length were determined by the donor’s geno-
type and not the host’s, which sustains the prior regulatory 
role of the NSC.10

External time givers

Besides daily hormonal oscillations, body temperature 
variations, and behavioral changes, one of the most evi-
dent daily rhythms that defines circadian rhythmicity is the 
sleep/wake cycle.

In the absence of external cues, the circadian clock sys-
tem performs its ‘daily program’ freely, which is not com-
pletely aligned with the conventional 24-hour cycle.11

In order to align with environmental factors and to op-
timize synchronization, it compiles information from time 
givers or so called ‘zeitgebers’, which are: light input, nu-
trient intake, physical activity, and social engagement.12–14

Light input, the most significant time giver of the master 
clock, is an indirect regulator applied to peripheral clocks 
throughout the central nervous system (CNS). Signal from 
the melanopsin-expressing photoreceptor cells in the ret-
ina is conducted via the retinohypothalamic tract to the 
central clock.4 If light and feeding cycles deviate, a slow 
reset starts in the periphery, until the new feeding rhythm 
is achieved.8

The most effective time giver for peripheral tissues is the 
rhythmic feeding behavior.

In rodents, restricting food access only during the in-
active phase results in a complete phase shift of circadian 
gene expression in numerous peripheral tissues (heart, 
pancreas, adipose tissue, kidneys, liver), whereas centrally, 
it remains identical.9 For instance, the liver clock maintains 
circadian rhythmicity in the absence of an intact autonom-
ic hepatic input if either direct adrenal control or rhyth-
mic feeding behavior is present.10 The connection between 
the CNS and peripheral clock mechanisms is coordinated 
through numerous factors, as seen in Figure 1.

Peripheral clocks

The liver is the most studied peripheral circadian oscillator. 
Here, 20% of the gene expression is believed to function in 
conformity with daily rhythmicity and the enzymes needed 
for pathway mechanisms.15 The vast majority of circadian 

FIGURE 1.  Signals connecting central and peripheral oscillators11–13
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gene transcripts are controlled by the liver clock itself, and 
only a small subset is influenced by systemic signals.16 Daily 
physiologic processes are constantly balanced in order to 
use nutrients in the most energy-efficient manner. Carbo-
hydrates are fast energy sources, protein-coding genes are 
expressed when metabolic requirements are the highest, 
whereas ineffective metabolic cycles are silenced.15 

A bidirectional relationship between the gut microbiome 
and the circadian clock system has been described, and it 
is known as the ‘gut microbiota-circadian clock axis’. This 
peripheral oscillator is constantly supervised by the cen-
tral clock, but its main regulator is the individual feeding 
behavior.17 Daily alterations are present in the composi-
tion and functioning of the microbiome, also regulated by 
the rhythmic feeding schedule and nutritional content.18 
Circadian misalignment in time results in dysbiosis, which 
leads to altered glucose tolerance and obesity. Studies 
have shown that after fecal transplantation from Period 
1/2 knockout (Per1/2−/−) mice to germ-free mice, daily 
rhythmicity was reestablished only one week after the in-
tervention.18

The direct link between abdominal adiposity and circa-
dian rhythm disruption was best highlighted in sleep loss 
studies. Caloric intake is increased during sleep loss due to 
changes in appetite hormones (detailed below) and higher 
energy expenditure. Hunger and appetite ratings via visual 
analog scores (VAS) showed a significant increase in ap-
petite in the evening (8 PM) and decline in the morning 
(7:50 AM).19 Rhythm in appetite was observed mainly for 
high-energy foods (sweets, starchy and salty foods, fruits, 
meat), which is a result of brain activity changes mainly in 
the nucleus accumbens (NA), showed by MRI scans.19,20 
Observational studies highlighted the inverse relationship 
between the length of the sleeping period, body mass in-
dex (BMI), and waist circumference.21 Body fat distribu-
tion, mainly in the visceral area, predisposes to increased 
risk of numerous metabolic and cardiovascular diseases. 

As a peripheral tissue, the skeletal muscle is supervised 
by the central clock and influenced mostly by daily exter-
nal factors such as daily scheduled physical activity.22 RT-
QPCR and microarray analysis of skeletal muscle biopsies 
revealed that 14.5% of transcripts presented a day-night 
fluctuation of gene expression, one third of which were 
protein-coding transcripts involved in mitochondrial dy-
namics.23 For instance, MyoD (myogenic differentiation 1 
mRNA), a circadian transcriptome specific to muscle cells 
with a prior role in myogenesis, was shown to be activated 
by CLOCK and BMAL1 genes.22 The oxidative capacity of 
the muscle tissue showed obvious day-night rhythmicity 
with a peak at the end of the day.24

By consequence, a disrupted circadian rhythm will lead 
to insufficient metabolic flexibility, which in time will eas-
ily elicit the development of cardiometabolic disorders.25

Genetic background 

Gene expression is coordinated by a 24-hour periodicity 
in nearly all cells of the human body. This is executed by a 
transcription/translation feedback loop, which is the main 
defining element of the mammalian clock.26 During tran-
scriptional regulation, the heterodimeric transcription 
factor complex CLOCK and BMAL1 (Brain and Muscle 
ARNT-Like 1) dimerizes and attaches to a specific site of 
the DNA called E-box enhancer elements, which automat-
ically activates or inhibits the transcription of downstream 
Period (Per 1,2,3) and Cryptochrome (Cry 1,2) genes. 
Transcriptomes interact, form complexes, and translocate 
to the nucleus to inhibit CLOCK gene expression by in-
teracting with the CLOCK-BMAL1 dimer.26 Elimination 
of the repression structure (by degradation or ubiquitina-
tion) will restart this process.27 The most studied interlock-
ing auxiliary feedback loops include the orphan nuclear 
receptors REV-ERBα and RORα, which will also lead to 
rhythmic BMAL1 expression.28

Several other core clock genes were identified, which 
facilitate important cardiometabolic disturbances by di-
minished expression: (1) BMAL1 – hypotension and in-
creased adipogenesis,29,30 (2) PPAR – decreased day-night 
blood pressure oscillation,31 (3) CRY – hypertension and 
excess in aldosterone secretion,32 (4) HDAC3 – liver ste-
atosis and lipid metabolism disorders,33 (5) PER – ad-
vanced sleep-wake phase disorder (ASWPD) and delayed 
sleep-wake phase disorder (DSWPD),34,35 (6) SIRT1 – fat 
burning alteration during sleep phases, insulin secretion 
and gluconeogenesis, adipocyte differentiation.36–38

Circadian fluctuation of 

metabolically significant hormones

Cortisol and melatonin both have pleiotropic effects on sev-
eral tissues and are interrelated, being in an inverted phase 
relationship. The pineal gland, supervised by the NSC 
through a polysynaptic network, produces melatonin in 
order to facilitate sleep in a rhythmic manner. It reaches 
its peak at the midpoint of the sleeping period, then bright 
light firmly decreases melatonin levels and promotes cor-
tisol production by the adrenocorticotropic hormone 
(ACTH) via an independent sympathetic mechanism.39 

The consequence of the activation of the hypothalam-
ic-pituitary-adrenal axis is a daily rhythmic production of 
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ACTH and a slow decrease during the day, reaching its 
nadir at the beginning of the sleeping phase. An increas-
ing pattern between 2 AM and 4 AM is shown to lead to 
a maximal hormonal rise from the adrenal gland in the 
morning, which provokes vigilance and initiates catabolic 
processes in adipose and muscle cells.40 The rhythmic pat-
tern of cortisol secretion is maintained even in the lack of 
external signals.41

Interestingly, during circadian disruption, time interval 
difference between the beginning of inactive cortisol secre-
tion and the starting point of melatonin production will re-
main the same (1 hour 25 minutes ± 27 minutes) regardless 
of the consequent fluctuation of melatonin levels. There-
fore, this pattern is useful in identifying circadian phases.42

Leptin is mainly produced by adipocytes and in the 
stomach in order to suppress appetite during the night and 
to promote nocturnal fasting and sleep.43,44 Leptin levels 
show an increase in the first part of the night, peaking at 
around 4  AM with a decreasing tendency afterwards.45

Ghrelin provides a link between peripheral and central 
clock systems. Produced in the pancreas, stomach, and hy-
pothalamus,46,47 it stimulates the appetite through its ac-
tion on neuropeptide Y in the lateral hypothalamus.48 In vi-
tro studies have highlighted that its fluctuation can change 
clock behavior by having a direct effect on the NSC.49 High 
levels were found during the early hours of the night, with 
a decrease before awakening and elevated levels one hour 
prior to meals.50 The daily variations of this hormone are 
modulated by nutrient intake, but sleep deprivation main-
tains high levels of ghrelin leading to increased hunger and 
consequently to obesity.51 In order to find out what hap-
pens exactly during a regular and a misaligned day, we need 
to individually analyze the hormonal fluctuations linked to 
behavioral (fasting/feeding, sleep/wake episodes) and cir-
cadian cycles separately, as shown in Table 1 below.52

A significant interaction was observed between the 
two distinct cycles of leptin levels. During behavioral 

cycle desynchronization, leptin levels were significantly 
diminished, especially when a shift of maximum 12 hours 
occurred from the normal cycle. This suggests that leptin 
can be considered to be a short-term regulator of energy 
homeostasis if behavioral misalignment occurs.45 A decline 
in leptin levels leads to increased appetite and low energy 
expenditure.53

The complete inversion of the cortisol profile contributes 
to hyperglycemia and insulin resistance.54,55 Additionally, 
during disruption of both behavioral and circadian bas-
es, the level of melatonin is maintained, but its rhythm is 
considerably dampened.56 The chronic mistiming of daily 
meals, especially when melatonin levels peak, will lead to 
metabolic diseases. Phase angle is a term mostly used in 
clinical trials to quantify circadian disharmony. It stands 
for the activation of circadian factors, such as melatonin 
onset, under dim light conditions (DLMO) and minimum 
core body temperature – both are factors of circadian co-
ordination, which are compared to the timepoints of the 
sleep/wake cycle.57

Macronutrient utilization 

with circadian pattern 

Macronutrient intake shows circadian periodicity in ani-
mal models. At the beginning of the active phase, due to 
low glycogen stores and the increase of neuropeptide Y in 
the paraventricular nucleus of the hypothalamus, the elec-
tive source of nutrients are carbohydrates. Whereas, by the 
start of the passive period, there is a switch in macronu-
trient utilization towards lipids, with a constant slow re-
lease of energy throughout the day.58 At this point, genes 
playing part in de novo lipogenesis are upregulated, while 
fatty acid oxidation is reduced. Without parallel lipolysis in 
adipose tissues, this variation favors fatty acid dissolution 
in the morning and lipogenesis at the end of the behavioral 
cycle in the evening.23

TABLE 1.  The independent effects of behavioral and circadian cycle on metabolically significant hormones41

Hormones Independent effects of the  
behavioral cycle

Independent effects of the  
circadian cycle

Peak Nadir Peak

Leptin After last meal Around breakfast No endogen rhythm

Glucose Depending on meal timing Biological night (10:30 PM – 6:30 AM)

Insulin Depending on meal timing No endogen rhythm

Epinephrine Wake period Sleep episode Biological day (2:30 PM – 6:30 PM)

Norepinephrine Wake period Sleep episode No endogen rhythm

Cortisol After awakening Onset of sleep episode End of biological night
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Glucose utilization

Human studies have demonstrated that in concordance 
with the glucostatic theory, glucose tolerance is increased 
in the morning due to better β-cell responsiveness. This 
elicits fast and easy assimilation of carbohydrates, for 
which insulin response is prompt when fasting glucose 
levels are stable.59 Conversely, obese patients have a bet-
ter glucose tolerance later throughout the day. Increased 
glucose levels have been observed after waking hours, and 
glucose and insulin rhythms were dampened and phase-
shifted by 1.5–2 hours.60 Muscle cells and hepatic glycogen 
stores have their own specific insulin sensitivity patterns 
with peaks during the evening, whereas the subcutaneous 
adipose tissue shows 54% intensification in insulin sensi-
tivity around noon, compared to midnight.61,62 This func-
tion is known to be missing or completely reversed in type 
2 diabetes mellitus (T2DM). The peak of insulin sensitiv-
ity occurs at around 7 PM and decreases in the morning 
hours, resulting in a well-known mechanism in patients 
with diabetes, called the ‘dawn phenomenon’.63,64

Insulin secretion ratio varies across the daily cycle, with 
total insulin level peaking between 12 PM and 6 PM. Dur-
ing nighttime, its production is decreased, reaching na-
dir between midnight and 6 AM.65 The insulin secretory 
rhythm in diabetic patients is completely absent, which 
can be additionally explained by the changed characteris-
tics of cortisol secretion.66

Insulin clearance is increased importantly during night-
time by 30–40%, mainly during sleeping periods between 
11 PM and 3 AM in comparison with morning wake peri-
ods. Hepatic insulin extraction is decreased around noon.67 
The uptake of glucose by insulin-independent mechanisms 
or glucose effectiveness is increased in the morning.68

Lipid metabolism

Fifteen percent of lipid metabolites in the plasma and the 
saliva show daily rhythmicity, out of which 80% are lipid 
compounds with peaking levels between mid-morning and 
noon.69 Almost two thirds of triglycerides show daily fluc-
tuating levels without any consensus regarding the defini-
tion of phases.70–72 Men have a more robust daily variation 
of triglyceride levels compared to women, due to the effect 
of estrogen on these compounds. After the consumption 
of the same meal, the increase in triglyceride level in men 
is double compared to women;73 there are no significant 
daily variations in HDL-C and total cholesterol levels.74 
Cholesterol synthesis is more likely to be influenced by be-
havioral changes and external aspects, which significantly 
define its fluctuation.75 Interindividual variability has been 
observed regarding lipid rhythms. This finding allows to 
cluster subjects concerning rhythmicity intensity, ampli-
tude, and timing, concluding the fact that there are sepa-
rate circadian metabolic phenotypes.76

Circadian rhythm dysfunction 

in metabolic syndrome

Misalignment stands for the state of being in the wrong 
position compared to something else or being improperly 
adjusted.77 The most significant phase shifts concerning 
circadian rhythm are: sleep/wake cycle misalignment dis-
respecting the biological night, internal central vs. periph-
eral phase shift, rhythm of nutrient intake vs. sleep/wake 
or light/dark cycles.57 A significant percentage of the risk 
factors for developing cardiovascular disease is covered by 
the well-known elements of metabolic syndrome: hyper-
tension, dyslipidemia, elevated plasma glucose, and obe-

FIGURE 2.  The effects of circadian misalignment on the components of metabolic syndrome73
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sity.78 During recent years, evidence has proven the link 
between circadian rhythm disturbances and these condi-
tions.79–81 This link was best defined by circadian misalign-
ment protocols.57 For instance, in a study conducted by 
Frank et al., 10 subjects went through 10 days of laboratory 
protocol, consisting of lengthened daily cycles (28-hour 
days). After gradually shifting behavioral cycle compared 
to daily circadian rhythm, a 12-hour difference was ob-
tained. The detrimental effects of circadian misalignment 
were visible shortly after desynchrony occurred with 
changes highlighted in Figure 2.82

Numerous epidemiological studies found a substantial 
link between shift work and the emerging risk for develop-
ing the components of metabolic syndrome.83–85 Not only 
in working-age adults but also in community-dwelling old-
er populations, irregular daily activities measured by ac-
tigraphy increased the prevalence of metabolic syndrome. 
In contrast, balanced daily activity rhythms were linked to 
lower prevalence of cardiovascular disease.86 A link with 
several other conditions, such as sleep disturbances,87 
depression,88,89 cognitive decline,90 steatohepatitis,91 has 
been demonstrated as well. 

A more complete understanding of the pathophysio-
logical changes concerning metabolic syndrome has been 
offered by epigenetic findings.92,93 DNA methylation pro-
cesses are crucial factors in epigenetic alteration, coordi-
nating tissue-specific gene expressions which demonstrat-
ed the harmful effects of only one night of sleep loss.94 This 
was observed in the case of T2DM and obesity, in which 
‘metabolic memory’ and histone alterations defined gene 
expression involved in the development of diabetes com-
plications.95

Key cardiometabolic factors 

and outcomes influenced by 

circadian clock machinery

Cardiovascular implications

Several studies outlined the major consequence of cir-
cadian desynchronization in cardiovascular pathologies. 
Hypertension,96 lack of nocturnal drops in blood pres-
sure values, raised blood pressure variability, and altered 
daily rhythm of cardiac output were all associated to cir-
cadian misalignment.97,98 The high incidence of myocar-
dial infarction (MI) between 6 AM and 12 PM is in close 
connection with abnormal daily blood pressure patterns. 
Moreover, a circadian phenotype was recognized in pa-
tients with MI linked with BMAL1, CLOCK, and PER1 
clock gene alterations.99 The prevalence of life-threat-
ening arrhythmias (ventricular fibrillation, ventricular 
tachycardia, sudden cardiac death) after awakening can 
be explained by the direct impact of the NSC on the elec-
trophysiology of the heart via neurohormonal mecha-
nisms and by local clock mechanisms through ion chan-
nel modifications.100

Metabolic profile

Preclinical studies of β-cell function in rodents evidenced 
the fact that several cellular mechanisms, such as de-
creased insulin exocytosis, altered mitochondrial function, 
and inadequate response to oxidative stress, are linked to 
pancreatic islet clock desynchronization. As a result, the 
size and function of the β-cell mass is decreased, leading to 

TABLE 2.  Comparison between advanced and delayed sleep-wake phase disorders106

Phenotype Advanced sleep-wake phase disorder 
(ASWPD)

Delayed sleep-wake phase disorder 
(DSWPD)

Epigenetic variation PER2 and CKI synergy34,114 PER3 H4 haplotype115

Characteristics “Early bird” “Night owl”

Wake-up time Starting from 4 AM After 10 AM 

Bedtime 7 PM 2 AM

Sleep quality and length Optimal Optimal

Symptoms Late afternoon fatigue 
Decreased work productivity 
Increased risk of accidents in the late 
afternoon116

Difficulty falling asleep and awakening 
on time
Daytime fatigue
Affected daytime function

Health consequences Mood disorders, depression116 Mood disorders: insomnia, depression
Psychiatric disorders: hyperactivity 
disorder, schizophrenia116

T2DM, hypertension, low fasting and 
total LDL cholesterol117

PER2– Period 2 gene; CKI – casein kinase I; Per3 H4 – H4 haplotype of Period 3 gene
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a worsened glycemic control.101 The raising prevalence of 
T2DM is also determined by the dampened glucose toler-
ance throughout the day and the shifting daily fluctuation 
of glucose levels due to disorganized macronutrient in-
take.102 Furthermore, individuals with T2DM and obesity 
show a distinct rhythm in circadian regulation of metabol-
ic pathways influencing lipolysis, by decreased daily clock 
function and metabolic gene expression in the subcutane-
ous adipose tissue.103

Nonalcoholic fatty liver disease (NAFLD) 

NAFLD is the most commonly associated chronic liver 
disease linked to metabolic syndrome; 25% of the popula-
tion of all ages suffers from this condition during the cur-
rent pandemic of obesity.104 The accumulation of hepatic 
triglycerides along with oxidative stress, inflammation, 
and mitochondrial dysfunction are all in close connection 
with clock dysfunction, although the clear etiology has not 
yet been defined.80,91

Mental health

Chronic sleep disharmony has its own expression later in 
life, after several decades, resulting in diminished sleep 
quality, chronic fatigue, emergence of obesity, T2DM, 
and increased all-cause mortality.105–108 Depression, cog-
nitive decline, and other affective disorders caused by 
sleep/wake cycle disturbances are not only risk factors 
but also comorbidities and consequences of metabolic 
changes.94,109,110 Light therapy and complementary meth-
ods were shown to restore the synchronization of the 
central clock and consequently the underlying peripheral 
clocks.111

Regarding epigenetic variations, there are two distinct 
disorders in which the starting and ending point of daily 
activities are off-axis, namely advanced sleep-wake phase 
disorder (ASWPD) and delayed sleep-wake phase disor-
der (DSWPD).112

Sleep duration is not as significant as the adjustment 
of starting point of the scheduled sleep episodes. In these 
conditions, if daily habitual sleeping rhythm of a person 
is suddenly disturbed by external factors, health conse-
quences occur.112

Eveningness on its own, as shown in Table 2, leads to 
disharmony, even if ordinary day-night rhythm is conduct-
ed.112 The important increase of HbA1c levels is aligned 
with delayed mid-sleep time and greater amount of food 
consumed during late night hours, leading to reduced gly-
cemic control.113 

Conclusion

All in all, the circadian machinery is a well-designed and 
structured system, coordinated by the nucleus suprachias-
maticus, the ‘master clock’, which converts external signals, 
divides them on a whole-body level, and integrates them 
into a 24-hour cycle. In understanding the complexity of 
both central and peripheral systems and their connection, 
we must search for signal disruption at an individual level by 
identifying probable causes of cardiometabolic disorders, 
which frequently relate closely to circadian misalignment.
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